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1. Introduction 
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1.1 The Problem 

 
Healthy natural resources form the foundation of the well-being of the 
Commonwealth of Massachusetts. This is mainly due to the multiple ecosystem 
services that nature provides. Information on these ecosystem services is critical to 
effective decisions toward protecting and enhancing land and water resources. 
With the increasing loss of natural processes in human-dominated landscapes, 
primarily urban and agricultural land, it is imperative to develop a tool to identify 
and restore these areas to their original ecosystem service potential. In developing 
land and for guiding conservation, much of the decisions made on natural 
resources are made at private and some public levels with guidance from local and 
state laws. Sometimes, these decisions are not based on scientific information 
related to the nature of the ecosystem and dynamic processes that are part of the 
land resources. For example, what are some regional benefits of forest cover to 
stormwater mitigation and reduction in climate change impacts?  
Decisions related to land protection, land-use changes, forestry, stormwater, 
agricultural soil conservation practices, and climate adaptation need assessment 
that uses location information and regional flow information within watersheds, 
ecological regions, and administrative boundaries. A spatially explicit support 
system is required to accurately assess these changes to help decisions made by 
communities and agencies. In the Commonwealth of Massachusetts, communities 
face decisions requiring accurate and timely spatial information about their 
community. With impending climate change, the need for local-level information 
on impacts and adaptation opportunities is becoming critical to communities. 
There is a need for developing scientific information on landscapes that can help in 
land use and water use decisions.  
 

1.2 Research Questions 
 

Specific research and management questions relevant to conservation needs in the 
Commonwealth of Massachusetts are: What is the role of the urban forest in 
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adapting to climate change? How can urban trees mitigate stormwater resulting 
from impervious cover and climate change? The role of trees in augmenting and 
protecting local water supplies? Can urban trees achieve regional benefits in 
ecosystem services? What are some benefits of urban trees in mitigating the urban 
heat island effect at a regional scale? How can farms benefit from timely cover 
cropping to improve soil health, thereby increasing environmental health and 
adapting to climate change?  
   

1.3 Research Needs 
 

These questions need careful assessment of the local ecosystem using Geographic 
Information Systems (GIS) and spatial models to simulate ecosystem services and 
potential climate impacts. These assessments need to be integrated into a decision 
support system that communities use, especially with location-specific information 
and must be accessible through available technology.  
 

1.4 Conceptual Model 
 

Climate impacts on urban areas are many that include stormwater flooding, 
droughts, water supply disruption, heat waves, soil erosion/ loss, groundwater 
depletion, soil ecosystem deterioration, and variable rainfall and temperature 
patterns. These impacts are stormwater flooding, droughts, water supply disruption, 
nutrient contamination, soil erosion/ loss, groundwater depletion, soil ecosystem 
deterioration, and variable rainfall and temperature patterns in rural areas. This is 
presented in the conceptual model shown in Figure 1 and is quantified as resilience 
characteristics.  
 

1.5 ICARES 
 

Rapid urbanization and changing temperature and precipitation patterns are putting 
severe strain on the health of local ecosystems. To assist communities in developing 
resilience to these changes, the Information for Climatic Adaptation and Resilience 
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for Ecosystem Services (ICARES) presents a suite of assessments that model specific 
ecosystem services under current and future climate scenarios. The primary purpose 
is to evaluate the role of vegetation, especially urban trees in mitigating 
vulnerability to stressors like urban heat islands, stormwater runoff, and impacts to 
water supplies for a spatially explicit decision support tool. This online tool enables 
communities to identify risk areas, understand risk contributing factors, and devise 
plans for restoration using scientifically grounded information and models. In 
addition, this spatially explicit decision support tool is easily accessible and spatial in 
assessment enabling the evaluation of benefits and costs of land decisions, nature of 
ecosystem services, and map attributes on a landscape. This tool will support and 
improve decisions made by communities and agencies.  
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2. Methods 
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Figure 1. Conceptual Model of the analysis 

 
As depicted in the conceptual representation (Figure 1), the analysis included four 
subcomponents: climate scenarios, landscape features (urban forests and 
agricultural cover crops), benefit assessment, and spatial decision tools.  
 
2.1 Baseline 
This study developed a baseline assessment of the landscape conditions at current 
conditions. This baseline level is critical to evaluate changes in ecosystem services 
under alternative scenarios.  
Representation is in cell-based units (Rasters), common in Geographic Information 
Systems (GIS) to analyze landscapes. Model of landscapes and sites and their 
linkages are presented in Figure 2.   
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Figure 2. Representation of model units and quantification of processes. 
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BASELINE ecosystem services: 
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2.1.1 Water Supply: For water supply protection, proximal and downstream water 
supply bodies were identified and weighed to assess vulnerability. 
 

  
 
2.1.2 Flood Mitigation: For flood mitigation, the runoff was modeled from each 
raster (using the CN method) and compared with and without scenarios. Values 
were aggregated for the project to evaluate benefits. 
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2.1.3 Heat Island: For the heat island effect, the average summer temperature 
during past years and in the future was computed. Ecosystem service provided by 
canopy cover through heat mitigation was evaluated using spatial models and data 
mining methods.   
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2.1.4 Cover crop: Cover crop's potential benefits in agricultural farming were 
assessed using cumulative Growing Degree Days to accumulate enough plant 
biomass for soil health and nutrient uptake. Optimal planting dates were used to 
evaluate the benefits of cover crops in farms.  
 

  
 
 
2.1.5 Soil Health: Soil health was assessed using Soil Organic Carbon as an indicator 
for carbon sequestration and health.  
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2.2 Climate change scenarios   
Two climate scenarios were assessed: Mid-century (2050) and late-century (2100) 
scenarios from GCM simulations. For each scenario, projected temperature and 
precipitation were calculated as differences from Baseline (2010). An RCM model 
prediction was used for these estimates. The raster layer from climate results was 
Spline -interpolated to match the rasters in the project. 
 
2.3 Benefits under vegetation 
The benefits of trees for each ecosystem service were used in mitigating the impacts 
of climate change, for both preserving tree cover and adding new cover. 
From evaluating these benefits, raster and aggregated values (subbasin) were used 
to assess the relative strength of each project for climate benefits. 
Each project evaluation was done visually as well as using change evaluation - 
[[climate impacts (without trees)]- [Climate impacts (with trees)]]/ [climate impacts 
(without trees)]. The range of benefits was evaluated for each parcel and was 
further aggregated to the project or regional scales. These spatial values are useful 
as a ranking mechanism for conservation for soils, water, land, and heat effects. 
 
2.4 Spatial Decision Tool 
Spatial data on the baseline and climate scenarios are added to a web-based 
decision support tool (ICARES-DS) for easy access by communities and users. This is 
based on ArcGIS Online interactive tools. 
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3. Results and Discussion 
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3.1 MA Climate Change 

 
3.1.1 Baseline Climate and Temperature 
 
The baseline precipitation and temperature data are shown in Figure 3 and Figure 4. 
Baseline data was determined as the yearly average for the period between 1981 
and 2010.    

 
Figure 3: Average total annual precipitation in Massachusetts (Current) 
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Figure 4: Average annual temperature in Massachusetts (Current) 
 
3.1.2 Future Climate Data 
 Future temperature (Figures 5 and 6) and precipitation (Figures 7 and 8) data 
were compiled for the Commonwealth of Massachusetts for 2050 and 2100. The 
projections were developed by the Community Climate System Model (CCSM-5) for 
the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change 
(IPCC). The data was sourced from the NCAR GIS Program. The following data 
presents ensemble averages under the RCP 4.5 scenario. Predictions are not 
available for the Cape Cod area. 
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Figure 5: Temperature Predictions (2050) 
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Figure 6: Temperature Predictions (2100) 
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Figure 7: Precipitation Predictions (2050) 
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Figure 8: Precipitation Predictions (2100) 
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3.2 Urban Areas and Gateway Cities 
 
 
Massachusetts Urban Areas (Figure 9) and the 26 Gateway Cities of Massachusetts 
(Figure 10) used in the analysis are presented below. 

 
Figure 9: Massachusetts Urban Areas  
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Figure 10: The 26 Gateway Cities in Massachusetts and Boston, Pittsfield, West 
Springfield, and Cambridge 
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3.3 Ecosystem Services 
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3.3.1 Cover crop Planting Date  
Weather data were collected from National Oceanic and Atmospheric 
Administration (NOAA) website and used for extracting daily maximum and 
minimum temperature for each year. Then for each day, GDD was calculated using 
the following formula: 
g=(t_max+t_min)/2-t_base, g≥0 
Where g is daily Growing Degree Day (GDD), t_max is the maximum temperature of 
the day (◦ C), t_min is the minimum temperature of the day (◦C), and t_base is rye 
base temperature which is 0 ◦C for winter rye (Stoskopf 1985). Also, total GDD from 
planting date to each sampling date was calculated as the total summation of daily 
GDDs in that time: 
t_s=∑_(i=p)^sg_i  
Where p is planting date (day of the year), s is sampling date (day of the year), t is 
accumulated GDD from planting date to the specific sampling date, and g is daily 
GDD. Details of methods are presented in Farsad et al. (2011).  
 
 

ICARES-DS - Cover Crop 
 
Figures 11-14 show the online decision support tool for cover crops and how it can 
be utilized and customized to fit the needs of the community. Figure 11 and Figure 
12 depict the Hybrid Model, and Figures 13 and Figure 14 show the Zonal Model. 
The tool itself can be accessed using the following link: 
https://arcg.is/1mvmPC 
 

https://arcg.is/1mvmPC
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-  
Figure 11: MA Cover Crop Planting Dates (Massachusetts view) 
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Figure 12: Example of pop-up indicating the optimal planting time for region 
selected  
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Figure 13: Zonal model view of the cover crop tool for Massachusetts 
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Figure 14: Zoomed in sample of the zonal model view of the cover crop tool for 

Massachusetts with pop-up indicating optimal cover crop planting date 
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3.3.2 Canopy Cover 
The NLCD 2016 USFS Tree Canopy Cover (CONUS) data was used to determine the 
canopy cover for Massachusetts. The data was processed using the ArcGIS Data 
Management toolbox to match the extent, pixel size, and projection of the 
Massachusetts polygon feature layer. The output is shown in Figure 15.   

 

 
Figure 15: Canopy Cover (%) in Massachusetts 
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3.3.3 Stormwater Runoff Mitigation 
Potential  

 
3.3.3.1 Stormwater runoff modeling 
 
Climate change is negatively affecting the hydrological cycle, exacerbating flooding 
conditions in many urban communities worldwide. Excessive runoff from intense 
precipitation causes devastating property damage, foul water flooding, and leaching 
of contaminants and nutrients. These contaminants can cause adverse effects on 
the human body, such as developing cancers and dysregulation of endocrine 
functions. Similarly, these chemicals cause severe environmental stress and public 
health concerns such as acidification of water systems. In addition, runoff can erode 
the soil causing alteration of microbial activities and geochemical processes, causing 
additional challenges for farmers, landowners, conservation policies, and city 
planners. In Massachusetts, precipitation is following an upward trend, stressing the 
importance of generating scientifically grounded information and models that can 
assist communities in building resilience.  
The stormwater runoff was modeled for every 30-meter raster cell in Massachusetts 
using the Curve Number Method. High-resolution state-wide land use and land 
cover data and a soils dataset were used to generate cross-tabulations and 
determine all land use/land cover and soil combinations within the state as depicted 
below (Figure 16). The unique combinations were used to assign proper curve 
numbers for each pixel. Outputs were aggregated by sub-basin to assess runoff 
patterns and determine high-risk communities in Massachusetts.  
To evaluate the effect of greening, runoff reduction was calculated using changes in 
runoff volume under a broadleaf deciduous tree with medium growth modeled for 
the Northeast by Hynicka and Caraco (2017). The medium, broadleaf assumption is 
based on a typical tree in urban areas, which are roughly 45' in height and 20 to 30" 
in DBH (averaging 25") (Bloniarz (USFS)- consultation).  
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Figure 16: Generation of the high-resolution land use and soil combinations 
dataset  
 
 
Runoff patterns and high-risk communities as determined by the models are 
depicted in the maps below (Figures 17-24). High-risk communities fall along the 
coast in the Greater Boston region, as well as the Berkshire, Franklin, Hampden, 
Middlesex, Barnstable, Lower Essex, and center Hampshire counties.  
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Figure 17: Current Runoff without Greening (By Subbasin) 
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Figure 18: Current Runoff with Greening Onsite 
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Figure 19: Current Runoff without Greening Onsite 
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Figure 20: Current Runoff with Greening (By Subbasin) 
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Figure 21: Future Runoff without Greening Onsite 
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Figure 22: Future Runoff without Greening (By Subbasin) 
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Figure 23: Future Runoff with Greening Onsite 
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Figure 24: Future Runoff with Greening (by Subbasin) 
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3.3.3.2 ICARES-DS - Stormwater Runoff  
 
Stormwater runoff calculations use the Runoff Curve Number Method with 
coefficients adapted to Massachusetts conditions. Greening scenarios are 
implemented using methods suggested by Hynicka and Caraco (2017) with greening 
with typical medium-sized, broadleaf trees. These stormwater runoff models 
(ICARES_StormwaterNow for the current climate and ICARES_Stormwater Future for 
future climate) are accessible from the following two links: 
 
     ICARES_Stormflow Now:     https://arcg.is/1y4HC4 
     ICARES_Stormflow Future: https://arcg.is/1PGDH10 
 
 
Start by searching for an address or Zoom to the region you are interested in. Click 
on the location, and information on the estimated runoff in inches per year will be 
displayed in the pop-up window. The model is being improved to add specific 
benefits of urban forests in mitigating stormwater runoff in urban areas. Sample 
maps are shown in Figures 25-28. The ICARES modules will be compiled on an 
ICARES website. Screenshots of both models at state and city scales are presented in 
the following pages. 
 

https://arcg.is/1y4HC4
https://arcg.is/1PGDH10
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Figure 25: ICARES Stormwater Runoff current Baseline 
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Figure 26: ICARES Stormflow zoomed in to location with pop-up of the current 
Baseline for region 
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Figure 27: Future runoff for Massachusetts

 
Figure 28: Future runoff for Massachusetts zoomed in to sample location with a 

pop-up indicating estimated runoff 
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3.3.4 Urban Heat Island Mitigation 
Potential 
 
3.3.4.1 Urban Heat Island Modeling 
 
Global temperatures have increased by 1.14oC over the last 40 years, with a 
projected additional increase of 0.2oC every decade. In urban communities where 
there are levels of impervious cover, solar energy is absorbed and re-radiated in the 
form of heat, causing average urban air temperatures that are substantially higher 
than surrounding communities. Temperatures that began to exceed normal 
community levels resulted in excess heat-related morbidity and mortality, 
exacerbation of mental health disorders and cardiovascular diseases, and disruption 
to the productivity and quality of landscapes. In addition to these severe 
implications for public health and conservation, energy demands and cooling costs 
have increased, placing many vulnerable communities at disproportional risk.  
The following tools were developed using extensive climate data in Massachusetts 
over the past 30 years and GCM climate projections from CCMP4-AR5. The datasets 
were used in combination with Spatial Analysis tools in ArcGIS to compute the 
distribution of current and future heat islands in Massachusetts. The data were 
subdivided into 16 quintiles. The current heat island for Massachusetts is shown in 
Figure 29. Future trends are depicted in Figure 30.  
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Figure 29: Current heat island in Massachusetts 
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Figure 30: Future Heat Island in Massachusetts 

 
To determine current and future sites with top 25% vulnerability in Massachusetts, 
the top four quintiles were selected to depict the top quartile of vulnerability and 
are presented in Figure 31 and Figure 32. Current communities in Western 
Massachusetts with elevated risk fall within the Greater Springfield, Hampshire, and 
Franklin counties. These regions have high percent imperviousness compared to 
surrounding communities. Similarly, on the Eastern side of Massachusetts, the 
current heat island spans primarily across the Middlesex, Norfolk, Plymouth, Bristol, 
and Suffolk counties, with some communities in the Essex and Worcester regions 
also falling within the top quartile of vulnerability. By 2100, the heat island is 
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projected to shift South and affect other communities in the Barnstable and Dukes 
counties.  

 
Figure 31: Current top quartile of vulnerability 
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Figure 32: Future progression of vulnerable communities Massachusetts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Randhir, T.O. 2022. University of Massachusetts Amherst 

 
53 

 
3.3.4.2 ICARES-DS HEAT ISLAND 
 
In addition, in support of the online decision support tool, these heat map models 
(ICARES_HeatNow for current climate and ICARES_HeatFuture for future climate) 
are tentatively accessible from the following two links: 
ICARES_HeatNow: https://arcg.is/1zuz0S  
ICARES_HeatFuture: https://arcg.is/DzH5W  
Start by searching for an address or Zoom to the region you are interested in. Click 
on the location, and information on the quartile range of the summer heat Island 
will be displayed in the pop-up window. The model is being improved to add specific 
benefits of urban forests in mitigating the heat island effect in urban areas. The 
ICARES modules will be compiled on the ICARES website. Screenshots of both 
models at state and city scales are presented on the following pages (Figures 33-36). 
 

 

https://arcg.is/1zuz0S
https://arcg.is/DzH5W
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Figure 33: ICARES_HeatNow - Massachusetts 
 

 
Figure 34: ICARES_HeatNow - Zoomed 
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Figure 35: CARES_HeatFuture - Massachusetts 
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Figure 36: CARES_HeatFuture - Zoomed 
 
3.3.4.3 PREDICTIVE MODELING 
  
To quantify the relationship between temperature and tree canopy and determine 
the mitigative properties of urban forests, a combination of linear regression 
analyses in ArcGIS and neural networks in the JMP platform was employed. High-
resolution temperature data for Massachusetts urban areas were joined with the 
NLCD tree canopy and percent imperviousness datasets. Analyses were run at the 
intercity and intracity levels. The intercity level analysis included all Massachusetts 
urban areas as presented in the first map below. Intracity analyses focused on the 
26 Gateway cities of Massachusetts (Attleboro, Barnstable, Brockton, Chelsea, 



 

 

Randhir, T.O. 2022. University of Massachusetts Amherst 

 
57 

Chicopee, Everett, Fall River, Fitchburg, Holyoke, Haverhill, Lowell, Lynn, Lawrence, 
Leominster, Malden, Methuen, New Bedford, Northampton, Peabody, Quincy, 
Revere, Salem, Springfield, Taunton, Westfield, and Worcester) as well as Boston, 
West Springfield, Pittsfield, and Cambridge.  
Ordinary least-squares linear regression algorithm was performed with intercity 
level data first. The model could be represented as follows: Y = 26.300305 + 
0.002743X1 – 0.000099X2, where Y represents the temperature in degrees Celsius, 
X1 represents percent imperviousness, and X2 represents percent canopy cover. The 
probability and robust probability were statistically significant for all terms (p<0.01). 
However, the adjusted R-squared for the model was 0.008046. This indicates that 
the model could only explain less than 1% variability in the dependent variable. It is 
possible that these results are because the temperature is a regional phenomenon 
rather than a local phenomenon. In addition, site-specific differences cannot be 
detected on a state-wide scale.  
Therefore, the regression algorithm was used to assess intracity differences in the 
30 individual Massachusetts cities. The OLS model results varied substantially across 
cities. For example, adjusted R-squared values ranged from 0.002465 for the city of 
Taunton and 0.505652 for the city of Lynn. These results show that a linear 
regression model can explain up to 50% of the variability in intracity analysis for the 
state of Massachusetts. 
Non-linear predictive modeling was performed using neural networks, as 
represented below. The diagram depicts the structure of the best fit neural model 
featuring one layer of 3 TanH nodes. The neural network model for the predictive 
modeling is shown in Figure 37.  
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Figure 37: Neural Network Model 

 
 Non-linear predictive modeling was found to explain greater variability in 
temperature than linear regression. The R-squared values at the intracity level 
ranged from 0.0324916 for Taunton to 0.6530902 for Lynn, indicating that a non-
linear predictive model can explain up to 65% of the variability in the dependent 
variable. The prediction profilers and contour profilers for Massachusetts Urban 
Areas are presented below in Figure 38 and Figure 39.  
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Figure 38: Massachusetts Urban Areas Prediction Profiler 

 
Figure 39: Massachusetts Urban Areas Contour Profiler  

 
 The outputs for the non-linear predictive modeling at the intracity level data 
have been compiled into separate PDF documents. Each PDF document includes 
model inputs and outputs for each city and information on the model's 
performance. The prediction profilers and contour profilers for each city are 
included below in Figure 40.  
 
                                  Prediction Profiler         Contour Profiler 
 
 
 
Attleboro 
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Barnstable 
 
 
 
 
 

  

 
 
 
Boston 
 
 
 
 
 

  

 
 
 
Brockton 
 
 
 
 
 

  

 
 
 
Cambridge 
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Chelsea 
 
 
 
 
 

  

 
 
 
Chicopee 
 
 
 
 
 

  

 
 
 
Everett 
 
 
 
 
 

  

 
 
 
Fall River 
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Fitchburg 
 
 
 
 
 

  

 
 
 
Haverhill 
 
 
 
 
 

  

 
 
 
Holyoke 
 
 
 
 
 

  

 
 
 
Lawrence 
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Leominster 
 
 
 
 
 

  

 
 
 
Lowell 
 
 
 
 
 

  

 
 
 
Lynn 
 
 
 
 
 

  

 
 
 
Malden 
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New 
Bedford 
 
 
 
 
 

  

 
 
 
Northampt
on 
 
 
 
 
 

  

 
 
 
Peabody 
 
 
 
 
 

  

 
 
 
Pittsfield 
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Quincy 
 
 
 
 
 

  

 
 
 
Salem 
 
 
 
 
 

  

 
 
 
Springfield 
 
 
 
 
 

  

 
 
 
Taunton 
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Figure 40: Prediction profilers and contour profilers from intracellular analysis 
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3.3.5 Water Supply Protection 
 
 The Water Supply Index was developed using a combination of high-
resolution data on runoff mitigation potential, soil hydrological groups, aquifers, 
wellhead, and surface water supply protection areas in the Commonwealth of 
Massachusetts. Each data set was processed separately to formulate subindexes 
that were then used in the final calculation of a state-wide water supply index. The 
datasets that were used in the calculation of the water supply index are shown 
below in Figures 41-44. 
.  

 
Figure 41: Interim Wellhead Protection Areas 
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Figure 42: MassDEP Wellhead Protection Areas (Zone 1) 
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Figure 43: Approved Wellhead Protection Areas (Zone II) 
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Figure 44: Aquifers in the Commonwealth of Massachusetts 

 
Starting with the runoff mitigation potential dataset formulated earlier in this 
report, a ranking system for runoff mitigation potential was generated by 
subtracting the minimum values from the maximum values and dividing by the 
difference between the two. This process was carried out at a state-wide level to 
achieve a value between 0 and 1 for each 30 by 30-meter unit. The score was then 
multiplied by five to generate a runoff subindex ranging from zero to five as 
depicted in Figure 45.  
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Figure 45: Subindex for Runoff Potential 

 
Aquifers were ranked based on their yield using ArcGIS. Aquifers that were low 
yielding were ranked a 1, aquifers with medium yield were assigned a 3, and 
aquifers that were high yielding were assigned a 5. This process was conducted at a 
state-wide level to generate a subindex, as depicted in Figure 46.  
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Figure 46: Subindex for Aquifer Yields 

 
Data on surface water supply protection areas were assigned either the value of 0 if 
the pixels fell outside of a watershed or a value of 1 if the pixels fell within a 
watershed. The shapefile output was then multiplied by 5 to create a subindex with 
values ranging from 0 to 5, as shown in Figure 47 and Figure 48.  
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Figure 47: Surface Water Supply Protection Areas 
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Figure 48: Subindex for Surface Water Supply Protection Areas 

 
The processing of wellhead protection areas data required several additional steps. 
First, each zone type was assigned a separate rank. Zone II (approved wellhead 
protection areas) were assigned a 3, while Interim Wellhead Protection Areas 
(IWPA) and Zone I (MassDEP wellhead protection areas) were assigned a rank of 5. 
Overlapping regions were summed to receive additional weight in the creation of 
the subindex. A shapefile containing values of 0, 3, 5, 8, 10, and 13 was computed 
and reclassified to a subindex ranging from 0 to 5. The output is shown in Figure 49 
and Figure 50.  
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Figure 49: Wellhead Protection Areas Combinations and Corresponding Values 
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Figure 50: Wellhead Protection Areas Subindex 

 
Lastly, soils data were subindexed and went into the creation of the final water 
supply index for the Commonwealth of Massachusetts. High-resolution SSURGO-
Certified soils data was modified and joined to data of soil hydrological groups in the 
Commonwealth of Massachusetts. Soils with excessive or somewhat excessive 
drainage received a rank of 5 due to high infiltrative capacities. Soils that were well-
drained were assigned a rank of 3. Soils with moderately well-drainage were 
assigned a rank of 1, and soils with somewhat poor, poor, or very poor drainage 
were assigned a rank of 0 due to the poor infiltrative capacity and predominantly 
clay constituents. The output can be observed in Figure 51.  
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Figure 51: Subindex for Soil Hydrologic Groups 

 
Each data set was converted from a polygon to a raster layer, and map algebra was 
executed to compute the state-wide index ranging from 0 to 100. Natural breaks 
were then used to classify the Water Supply Index into quintiles. The outputs are 
shown in Figures 52 and 53. .  
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Figure 52: Water Supply Index 
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Figure 53: Water Supply Index Categorized 

 
 It can be observed from the following outputs that areas with the highest 
Water Supply Index in the Commonwealth of Massachusetts are located near the 
coast or near large water body supplies, including the Quabbin Reservoir, the 
Connecticut River, and the Wachusett Reservoir.  
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3.3.6 Soil Organic Carbon  
 
3.3.6.1 Soil Organic Carbon Modeling 
 
 Soil organic carbon was estimated using The A2 scenario and EDCM model 
data from USGS (Zhiliang et al., 2011). The spatial processing was done using the 
raster calculator in ArcGIS. A carbon baseline was assessed at the top 20 cm of soil 
USGS (Zhiliang et al., 2011) and by calculating the average carbon stock in grams of 
carbon per square meter (gC/m2) of land (Zhiliang et al., 2011) from 2010 to 2020. 
The carbon flux was also estimated by subtracting 2020 data from the predicted 
2050 data, then dividing the difference by 30 years, then using the yearly flux to 
estimate 2100 soil carbon. The carbon flux was multiplied by 80 years and added to 
the 2020 carbon stock to obtain a carbon estimate for 2100.  Carbon stock data in 
2010, 2020, 2050, and 2100 were converted to integers then to point data. Data 
interpolation was conducted using Spline with borders tools in ArcGIS using 
Massachusetts state boundaries. It can be observed from the maps that soil organic 
carbon is expected to decrease by 2100 drastically. Areas most strongly impacted 
are in the Eastern part of the Commonwealth of Massachusetts. Figure 54- 
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Figure 54: Soil Organic Carbon for 2010 
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Figure 55: Soil Organic Carbon for 2020 
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Figure 56: Soil Organic Carbon for 2100 
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Figure 57: Soil Organic Carbon for 2050 

 
3.3.6.2 ICARES-DS - Soil Carbon  
 
Soil organic carbon (SOC) was estimated using The A2 scenario and EDCM model 
data from USGS (Zhiliang et al., 2011). The spatial processing was done using a 
raster calculator in ArcGIS. A carbon baseline was assessed at the top 20 cm of soil 
USGS (Zhiliang et al., 2011) and by calculating the average carbon stock in grams of 
carbon per square meter (gC/m2) of land (Zhiliang et al., 2011) from 2010 to 2020. 
The carbon flux was also estimated by subtracting 2020 data from the predicted 
2050 data, dividing the difference by 30 years, then using the yearly flux to estimate 
2100 soil carbon. The carbon flux was multiplied by 80 years and added to the 2020 
carbon stock to obtain a carbon estimate for 2100. These SOC models 
(ICARES_SoilCarbonNow for the current climate and ICARES_SoilCarbon Future for 
future climate) are accessible from the following two links: 
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ICARES_ SoilCarbon Now: https://arcg.is/1u5Lny  
ICARES_ SoilCarbon Future: https://arcg.is/11nvGr  
Start by searching for an address or Zoom to the region you are interested in. Click 
on the location, and information on the estimated runoff in inches per year will be 
displayed in the pop-up window. The model is being improved to add specific 
benefits of urban forests in mitigating stormwater runoff in urban areas. The ICARES 
modules are compiled on the ICARES website. Screenshots of both models at state 
and city-scale are presented in Figures 58-61.  
 

 
Figure 58: Full View of ICARES_ SoilCarbon Now 

 
 

https://arcg.is/1u5Lny
https://arcg.is/11nvGr
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Figure 59: Zoomed View of ICARES_ SoilCarbon Now 
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Figure 60: Full view of ICARES_ SoilCarbon Future 
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Figure 61: Zoomed view of ICARES_ SoilCarbon Future 
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3.4 Landuse Predictions  
 
 Three models of land use were selected for the project. The models are the 
ICLUS model of USEPA, the USGS-EROS predictions, and the Massachusetts land use 
predictions based on scenarios by Harvard Forest. The ICLUS model of USEPA and 
the USGS-EROS models offer future predictions for 2050 and 2100, while the 
Massachusetts land use predictions are based on scenarios by Harvard Forest 
models predictions for 2050 alone. For the USGS-EROS model, the B2 IPCC SRES 
scenario was selected. The IPCC SRES scenarios provide variations in key features of 
future population developments, including technology, economic development, and 
demographic changes. The B2 scenario focuses on environmental sustainability with 
intermediate levels of economic and technological development. The models were 
re-projected, clipped to the Commonwealth of Massachusetts, and are shown in 30 
meters by 30 meters resolution below. The ICLUS model of USEPA was developed 
under SSP2 and SSP5 scenarios. The SSP2 scenario was used for ICARES. The outputs 
are presented in Figures 62- 
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Figure 62: Harvard (HP1) Landuse 2050 Prediction Models 
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Figure 63: Harvard (HP2) Landuse Prediction 2050 
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Figure 64: Harvard (HP3) Landuse Prediction 2050 
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Figure 65: Harvard (HP4) Landuse Prediction 2050 
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Figure 66: ICLUS (2050) Prediction Model 
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Figure 67: ICLUS (2100) Prediction Model 
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Figure 68: CONUS (B2) 2050 Landuse Model Prediction 
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Figure 69: CONUS (B2) 2100 Landuse Model Prediction 
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